95 research outputs found

    Differential Expression and Localization of Glycosidic Residues in In Vitro and In Vivo Matured Cumulus-Oocyte Complexes in Equine and Porcine Species

    Get PDF
    Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and bN-acetylgalactosamine (GalNAc)-termi- nating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models

    Functional Expression of the Extracellular Calcium Sensing Receptor (CaSR) in Equine Umbilical Cord Matrix Size-Sieved Stem Cells

    Get PDF
    The present study investigates the effects of high external calcium concentration ([Ca(2+)](o)) and the calcimimetic NPS R-467, a known calcium-sensing receptor (CaSR) agonist, on growth/proliferation of two equine size-sieved umbilical cord matrix mesenchymal stem cell (eUCM-MSC) lines. The involvement of CaSR on observed cell response was analyzed at both the mRNA and protein level.A large (>8 µm in diameter) and a small (<8 µm) cell line were cultured in medium containing: 1) low [Ca(2+)](o) (0.37 mM); 2) high [Ca(2+)](o) (2.87 mM); 3) NPS R-467 (3 µM) in presence of high [Ca(2+)](o) and 4) the CaSR antagonist NPS 2390 (10 µM for 30 min.) followed by incubation in presence of NPS R-467 in medium with high [Ca(2+)](o). Growth/proliferation rates were compared between groups. In large cells, the addition of NPS R-467 significantly increased cell growth whereas increasing [Ca(2+)](o) was not effective in this cell line. In small cells, both higher [Ca(2+)](o) and NPS R-467 increased cell growth. In both cell lines, preincubation with the CaSR antagonist NPS 2390 significantly inhibited the agonistic effect of NPS R-467. In both cell lines, increased [Ca(2+)](o) and/or NPS R-467 reduced doubling time values.Treatment with NPS R-467 down-regulated CaSR mRNA expression in both cell lines. In large cells, NPS R-467 reduced CaSR labeling in the cytosol and increased it at cortical level.In conclusion, calcium and the calcimimetic NPS R-467 reduce CaSR mRNA expression and stimulate cell growth/proliferation in eUCM-MSC. Their use as components of media for eUCM-MSC culture could be beneficial to obtain enough cells for down-stream purposes

    A Unique Carrier for Delivery of Therapeutic Compounds beyond the Blood-Brain Barrier

    Get PDF
    BACKGROUND: Therapeutic intervention in many neurological diseases is thwarted by the physical obstacle formed by the blood-brain barrier (BBB) that excludes most drugs from entering the brain from the blood. Thus, identifying efficacious modes of drug delivery to the brain remains a "holy grail" in molecular medicine and nanobiotechnology. Brain capillaries, that comprise the BBB, possess an endogenous receptor that ferries an iron-transport protein, termed p97 (melanotransferrin), across the BBB. Here, we explored the hypothesis that therapeutic drugs "piggybacked" as conjugates of p97 can be shuttled across the BBB for treatment of otherwise inoperable brain tumors. APPROACH: Human p97 was covalently linked with the chemotherapeutic agents paclitaxel (PTAX) or adriamycin (ADR) and following intravenous injection, measured their penetration into brain tissue and other organs using radiolabeled and fluorescent derivatives of the drugs. In order to establish efficacy of the conjugates, we used nude mouse models to assess p97-drug conjugate activity towards glioma and mammary tumors growing subcutaneously compared to those growing intracranially. PRINCIPAL FINDINGS: Bolus-injected p97-drug conjugates and unconjugated p97 traversed brain capillary endothelium within a few minutes and accumulated to 1-2% of the injected by 24 hours. Brain delivery with p97-drug conjugates was quantitatively 10 fold higher than with free drug controls. Furthermore, both free-ADR and p97-ADR conjugates equally inhibited the subcutaneous growth of gliomas growing outside the brain. Evocatively, only p97-ADR conjugates significantly prolonged the survival of animals bearing intracranial gliomas or mammary tumors when compared to similar cumulated doses of free-ADR. SIGNIFICANCE: This study provides the initial proof of concept for p97 as a carrier capable of shuttling therapeutic levels of drugs from the blood to the brain for the treatment of neurological disorders, including classes of resident and metastatic brain tumors. It may be prudent, therefore, to consider implementation of this novel delivery platform in various clinical settings for therapeutic intervention in acute and chronic neurological diseases

    Le tecnologie riproduttive

    No full text

    Mitochondrial distribution and activity in human mature oocytes: GnRH agonist vs antagonist for pituitary downregulation

    No full text
    Objective: To analyze the effects of GnRH agonists versus antagonists on mitochondrial distribution and activity in human mature oocytes. Design: Randomized research experimental study. Setting: Academic basic research laboratory and hospital-based fertility center. Patient(s): Two hundred twenty-five supernumerary mature oocytes from 44 patients. Intervention(s): Fluorescent staining and confocal laser scanning microscopy on oocytes after the use of either GnRH agonist (group A) or GnRH antagonist (group B). Main Outcome Measure(s): Oocyte mitochondrial distribution pattern and activity using MitoTracker Orange CMTM Ros. Result(s): More oocytes showing polarized mitochondrial distribution pattern were found in group A than in group B (35% vs. 14%). In group B, hCG rather than GnRH agonist, for ovulation induction, resulted in more oocytes showing heterogeneous (57% vs. 14%), in particular polarized (24% vs. 0) mitochondrial distribution. In groups A and B, fluorescence intensity did not vary according to mitochondrial distribution pattern. However, fluorescence intensity was higher in oocytes with polarized and large granules configurations in group B compared to group A. Conclusion(s): The GnRH agonist and antagonist may have different effects on oocyte mitochondrial distribution pattern and activity. The GnRH antagonist may induce mitochondrial hyperactivity, which may be detrimental to the oocyte. (Fertil Steril 2009;91:249–55. 2009 by American Society for Reproductive Medicine.

    Immunofluorescence localization of mu-opioid receptors on buffalo (Bubalis Bubalis) primary and in vitro matured oocytes.

    No full text
    Opioids exert their activity via the interaction with multiple G-protein coupled receptors, namely mu, delta and kappa-opioid receptors and have been related with many reproductive events. In our previous studies we showed expression, localization and functional roles of the mu-opioid receptor (MOR) in bovine oocytes. The objective was to determine, by immunoflorescence (IF) detection, whether MOR is present in buffalo immature and in vitro matured (IVM) oocytes. Five oocytes, at the germinal vesicle (GV) stage and five IVM oocytes, were quickly denuded and kept in 4% (v/v) paraformaldehyde until examination. On the day of the test, all oocytes were washed in 100mM glycine in PBS and incubated for 30 min in PBS-1%BSA. Control oocytes were incubated in PBS-1% BSA for 90 min, while a 1:2500 dilution of the primary rabbit antibody against the third extracellular loop of MOR, was applied to test oocytes and allowed to react. All oocytes were washed in PBS, then incubated with a FITC-conjugated anti rabbit IgG-secondary antibody diluted 1:200 in Evans Blue/PBS 1x to counterstain negative cells. Oocytes were visualized by a laser scanning confocal microscope. The IF highlighted, by intense brilliant green, the localization of MOR’s on buffalo GV and IVM oocytes. The negative control did not show any fluorescent region or spotted colouring. We suggest that opioid receptors in immature and in vitro matured oocytes may interact with opioid peptides locally produced within the female reproductive tract
    • …
    corecore